Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #12 Oct 14 2023 13:12:26
%S 1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,1,1,3,5,5,7,1,5,15,1,1,7,7,1,1,1,1,77,
%T 7,35,3,1,1,455,35,7,21,55,55,7,7,7,105,1,5,221,13,11,33,55,1,19,1,5,
%U 15,1,1,5005,715,143,33,17,85,161,35,1,3,11,55,95095
%N a(n) = numerator(denominator(Bernoulli''(n, x)) / denominator(Bernoulli(n, 1))).
%F a(n) = numerator(A366168(n) / A027642(n)).
%p seq(numer(denom(diff(diff(bernoulli(n, x), x),x))/denom(bernoulli(n, 1))), n = 0..75);
%o (PARI) a(n) = numerator(lcm(apply(denominator, Vec(deriv(deriv(bernpol(n))))))/denominator(subst(bernpol(n, x), x, 1))); \\ _Michel Marcus_, Oct 14 2023
%Y Cf. A366168/A027642, A366427 (denominator), A366570/A366152 (1st derivative).
%K nonn,frac
%O 0,15
%A _Peter Luschny_, Oct 13 2023