login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = numerator(denominator(Bernoulli''(n, x)) / denominator(Bernoulli(n, 1))).
3

%I #12 Oct 14 2023 13:12:26

%S 1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,1,1,3,5,5,7,1,5,15,1,1,7,7,1,1,1,1,77,

%T 7,35,3,1,1,455,35,7,21,55,55,7,7,7,105,1,5,221,13,11,33,55,1,19,1,5,

%U 15,1,1,5005,715,143,33,17,85,161,35,1,3,11,55,95095

%N a(n) = numerator(denominator(Bernoulli''(n, x)) / denominator(Bernoulli(n, 1))).

%F a(n) = numerator(A366168(n) / A027642(n)).

%p seq(numer(denom(diff(diff(bernoulli(n, x), x),x))/denom(bernoulli(n, 1))), n = 0..75);

%o (PARI) a(n) = numerator(lcm(apply(denominator, Vec(deriv(deriv(bernpol(n))))))/denominator(subst(bernpol(n, x), x, 1))); \\ _Michel Marcus_, Oct 14 2023

%Y Cf. A366168/A027642, A366427 (denominator), A366570/A366152 (1st derivative).

%K nonn,frac

%O 0,15

%A _Peter Luschny_, Oct 13 2023