login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366416
a(n) is the first prime that starts and ends with at least n 1's (in base 10).
2
11, 11, 1114111, 111181111, 111110611111, 1111118111111, 111111151111111, 111111110911111111, 1111111111111111111, 1111111111111111111, 1111111111111111111, 1111111111111111111, 1111111111111111111, 1111111111111111111, 1111111111111111111, 1111111111111111111, 1111111111111111111
OFFSET
1,1
COMMENTS
The initial and final strings of 1's are allowed to overlap.
If k is in A004023 and (k+1)/2 <= j <= k, then a(j) = (10^k-1)/9 (unless it is (10^i-1)/9 for some i < k where i is in A004023 and (i+1)/2 <= j <= i).
EXAMPLE
a(3) = 1114111 which is prime and starts and ends with 3 1's.
MAPLE
f:= proc(n) local x, s, d;
for d from n to 2*n-1 do
if isprime((10^d-1)/9) then return (10^d-1)/9 fi
od;
s:= (10^n-1)/9;
for d from n do
for x from 10^d*s + s by 10^n to 10^d*(s+1) do
if isprime(x) then return x fi
od od
end proc:
map(f, [$1..20]);
PROG
(Python)
from gmpy2 import is_prime
def a(n):
t = (10**n-1)//9
for d in range(n, 2*n):
if is_prime(t): return t
t = 10*t + 1
suffix = (10**n-1)//9
d = 2*n
while True:
prefix = 10**(d-n)*suffix
for mid in range(0, 10**(d-n), 10**n):
t = prefix + mid + suffix
if is_prime(t): return t
d += 1
print([a(n) for n in range(1, 18)]) # Michael S. Branicky, Oct 10 2023
CROSSREFS
Sequence in context: A280838 A140105 A265715 * A178496 A186433 A342076
KEYWORD
nonn,base,look
AUTHOR
Robert Israel, Oct 10 2023
STATUS
approved