%I #10 Oct 09 2023 11:19:35
%S 1,2,11,92,905,9734,110867,1314140,16041947,200302394,2546194497,
%T 32840654064,428708791851,5653487876454,75201937732737,
%U 1007829909427734,13594917784717860,184440900147250722,2515052824018153080,34451608720123170686,473853214173320181668
%N G.f. A(x) satisfies A(x) = (1 + x * A(x)^(9/2)) / (1 - x).
%F a(n) = Sum_{k=0..n} binomial(n+7*k/2,n-k) * binomial(9*k/2,k) / (7*k/2+1).
%o (PARI) a(n) = sum(k=0, n, binomial(n+7*k/2, n-k)*binomial(9*k/2, k)/(7*k/2+1));
%Y Cf. A366400, A366401, A366403, A366404, A366405, A366406, A366407.
%K nonn
%O 0,2
%A _Seiichi Manyama_, Oct 09 2023