Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Oct 23 2023 15:07:39
%S 0,0,1,0,2,1,1,0,2,2,3,1,2,1,3,0,2,2,1,2,2,3,3,1,4,2,3,1,3,3,4,0,4,2,
%T 3,2,2,1,3,2,3,2,2,3,4,3,4,1,2,4,3,2,1,3,5,1,2,3,3,3,3,4,3,0,4,4,2,2,
%U 4,3,3,2,3,2,5,1,4,3,4,2,4,3,4,2,4,2,4,3,2,4,3,3,5,4,3,1,5,2,5,4,3,3,4,2,4
%N The number of edges minus the number of leafs in the rooted tree with Matula-Goebel number n.
%C Number of iterations of A366385 needed to reach the nearest power of 2.
%H Antti Karttunen, <a href="/A366388/b366388.txt">Table of n, a(n) for n = 1..65537</a>
%H <a href="/index/Mat#matula">Index entries for sequences related to Matula-Goebel numbers</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences related to prime indices in the factorization of n</a>
%F Totally additive with a(2) = 0, and for n > 1, a(prime(n)) = 1 + a(n).
%F a(n) = A196050(n) - A109129(n).
%F a(2n) = a(A000265(n)) = a(n).
%e See illustrations in A061773.
%t Array[-1 + Length@ NestWhileList[PrimePi[#2]*#1/#2 & @@ {#, FactorInteger[#][[-1, 1]]} &, #, ! IntegerQ@ Log2[#] &] &, 105] (* _Michael De Vlieger_, Oct 23 2023 *)
%o (PARI) A366388(n) = if(n<=2, 0, if(isprime(n), 1+A366388(primepi(n)), my(f=factor(n)); (apply(A366388, f[, 1])~ * f[, 2])));
%o (PARI)
%o A006530(n) = if(1==n, n, my(f=factor(n)); f[#f~, 1]);
%o A366385(n) = { my(gpf=A006530(n)); primepi(gpf)*(n/gpf); };
%o A366388(n) = if(n && !bitand(n,n-1),0,1+A366388(A366385(n)));
%Y Cf. A000720, A006530, A052126, A061395, A061773, A366385.
%Y Cf. A109129 (gives the exponent of the nearest power of 2 reached), A196050 (distance to the farthest power of 2, which is 1).
%Y Cf. also A329697, A331410.
%K nonn
%O 1,5
%A _Antti Karttunen_, Oct 23 2023