login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A366352
Lesser of 2 successive primes (k, k+4) sandwiching 3 consecutive nonsquarefree numbers.
0
97, 349, 1447, 1663, 2347, 3697, 9547, 13147, 13309, 13687, 14533, 14947, 15727, 16603, 21139, 24547, 24847, 26557, 27733, 31147, 32797, 33613, 34603, 35593, 36943, 38149, 38707, 40849, 41047, 42433, 44449, 44647, 45763, 45949, 46447, 50047, 52387, 58147, 58309
OFFSET
1,1
EXAMPLE
97 and 101 are prime numbers; 98 = 2 * 7^2, 99 = 3^2 * 11 and 100 = 2^2 * 5^2 are 3 consecutive nonsquarefree numbers, so 97 is a term.
349 and 353 are prime numbers; 350 = 2 * 5^2 * 7, 351 = 3^3 * 13, 352 = 2^5 * 11 are 3 consecutive nonsquarefree numbers, so 349 is a term.
MATHEMATICA
Select[Partition[Prime[Range[6000]], 2, 1], Differences[#] == {4} && AllTrue[Range[First[#] + 1, Last[#] - 1], ! SquareFreeQ[#1] &] &][[;; , 1]] (* Amiram Eldar, Oct 08 2023 *)
PROG
(PARI) isok(p) = isprime(p) && (nextprime(p+1) - p == 4) && (sum(k=1, 3, issquarefree(p+k)) == 0); \\ Michel Marcus, Oct 08 2023
CROSSREFS
Intersection of A023200 and A061400.
Cf. A061368.
Sequence in context: A142631 A087861 A269786 * A105128 A031927 A174338
KEYWORD
nonn
AUTHOR
Massimo Kofler, Oct 08 2023
STATUS
approved