OFFSET
1,2
FORMULA
a(n) = A002109(n) * Product_{k=1..n} Sum_{j=1..k} (j/k)^k.
a(n) ~ A002109(n) * c * d^n / n^f, where
d = 1/(1 - exp(-1)) = A185393
f = (exp(1) + 1) / (2*(exp(1) - 1)^2) = 0.629685240773129106752912520161993823...
c = 1.038111196610478473178942324022485064169644880240145128332184584611...
a(n) ~ A * c * d^n * n^(n*(n+1)/2 + 1/12 - f) / exp(n^2/4), where A is the Glaisher-Kinkelin constant A074962.
MATHEMATICA
Table[Product[Sum[j^k, {j, 1, k}], {k, 1, n}], {n, 1, 12}]
Table[Product[HarmonicNumber[k, -k], {k, 1, n}], {n, 1, 12}] // FunctionExpand
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 07 2023
STATUS
approved