Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Oct 07 2023 08:47:42
%S 1,1,1,2,1,1,1,2,2,1,1,2,1,1,1,1,1,2,1,2,1,1,1,2,2,1,2,2,1,1,1,1,1,1,
%T 1,4,1,1,1,2,1,1,1,2,2,1,1,1,2,2,1,2,1,2,1,2,1,1,1,2,1,1,2,2,1,1,1,2,
%U 1,1,1,4,1,1,2,2,1,1,1,1,1,1,1,2,1,1,1
%N The number of infinitary divisors of n that are terms of A366243.
%H Amiram Eldar, <a href="/A366309/b366309.txt">Table of n, a(n) for n = 1..10000</a>
%F Multiplicative with a(p^e) = 2^A139352(e).
%F a(n) = 2^A366247(n).
%F a(n) = A037445(n)/A366308(n).
%F a(n) = A037445(A366245(n)).
%F a(n) >= 1, with equality if and only if n is in A366242.
%F a(n) <= A037445(n), with equality if and only if n is in A366243.
%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 - 1/p)*(1 + Sum_{k>=1} 2^A139352(k)/p^k) = 1.44736831993091923328... .
%t s[0] = 0; s[n_] := s[n] = s[Floor[n/4]] + If[Mod[n, 4] > 1, 1, 0]; f[p_, e_] := 2^s[e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o (PARI) s(e) = if(e > 3, s(e\4)) + e%4\2 \\ after _Charles R Greathouse IV_ at A139352
%o a(n) = vecprod(apply(x -> 2^s(x), factor(n)[, 2]));
%Y Cf. A037445, A139352, A366242, A366243, A366245, A366247, A366246, A366308.
%K nonn,easy,mult
%O 1,4
%A _Amiram Eldar_, Oct 06 2023