login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. A(x) satisfying A(x) = 1 + x*A(x) * exp(3*x*A(x)).
7

%I #21 Oct 08 2023 06:55:54

%S 1,1,8,87,1428,31125,847818,27785205,1065267864,46802921769,

%T 2319200977230,127985909702409,7785440359004916,517616528753919933,

%U 37344834374921549154,2906043724955696034285,242627026212699695954352,21634774261037677172406609,2052077586846349144929739542

%N Expansion of e.g.f. A(x) satisfying A(x) = 1 + x*A(x) * exp(3*x*A(x)).

%C Related identities which hold formally for all Maclaurin series F(x):

%C (1) F(x) = (1/x) * Sum{n>=1} n^(n-1) * x^n/n! * F(x)^n * exp(-n*x*F(x)),

%C (2) F(x) = (2/x) * Sum{n>=1} n*(n+1)^(n-2) * x^n/n! * F(x)^n * exp(-(n+1)*x*F(x)),

%C (3) F(x) = (3/x) * Sum{n>=1} n*(n+2)^(n-2) * x^n/n! * F(x)^n * exp(-(n+2)*x*F(x)),

%C (4) F(x) = (4/x) * Sum{n>=1} n*(n+3)^(n-2) * x^n/n! * F(x)^n * exp(-(n+3)*x*F(x)),

%C (5) F(x) = (k/x) * Sum{n>=1} n*(n+k-1)^(n-2) * x^n/n! * F(x)^n * exp(-(n+k-1)*x*F(x)) for all fixed nonzero k.

%F a(n) = n! * Sum{k=0..n} binomial(n+1, n-k)/(n+1) * 3^k * (n-k)^k / k!.

%F Let A(x)^m = Sum_{n>=0} a(n,m) * x^n/n! then a(n,m) = n!*Sum_{k=0..n} binomial(n+m, n-k)*m/(n+m) * 3^k * (n-k)^k/k!.

%F E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas.

%F (1) A(x) = 1 + x*A(x) * exp(3*x*A(x)).

%F (2) A(x) = (1/x) * Series_Reversion( x/(1 + x*exp(3*x)) ).

%F (3) A( x/(1 + x*exp(3*x)) ) = 1 + x*exp(3*x).

%F (4) A(x) = 1 + (m+1) * Sum{n>=1} n*(n+m)^(n-2) * x^n/n! * A(x)^n * exp(-(n+m-3)*x*A(x)) for all fixed nonnegative m.

%F (4.a) A(x) = 1 + Sum{n>=1} n^(n-1) * x^n/n! * A(x)^n * exp(-(n-3)*x*A(x)).

%F (4.b) A(x) = 1 + 2 * Sum{n>=1} n*(n+1)^(n-2) * x^n/n! * A(x)^n * exp(-(n-2)*x*A(x)).

%F (4.c) A(x) = 1 + 3 * Sum{n>=1} n*(n+2)^(n-2) * x^n/n! * A(x)^n * exp(-(n-1)*x*A(x)).

%F (4.d) A(x) = 1 + 4 * Sum{n>=1} n*(n+3)^(n-2) * x^n/n! * A(x)^n * exp(-n*x*A(x)).

%F (4.e) A(x) = 1 + 5 * Sum{n>=1} n*(n+4)^(n-2) * x^n/n! * A(x)^n * exp(-(n+1)*x*A(x)).

%F a(n) ~ 3^n * (1 + 2*LambertW(sqrt(3)/2))^(n + 3/2) * n^(n-1) / (sqrt(1 + LambertW(sqrt(3)/2)) * 2^(2*n + 2) * exp(n) * LambertW(sqrt(3)/2)^(2*n + 3/2)). - _Vaclav Kotesovec_, Oct 06 2023

%e E.g.f.: A(x) = 1 + x + 8*x^2/2! + 87*x^3/3! + 1428*x^4/4! + 31125*x^5/5! + 847818*x^6/6! + 27785205*x^7/7! + 1065267864*x^8/8! + ...

%e where A(x) satisfies A(x) = 1 + x*A(x) * exp(3*x*A(x))

%e also

%e A(x) = 1 + 1^0*x*A(x)*exp(+2*x*A(x))/1! + 2^1*x^2*A(x)^2*exp(+1*x*A(x))/2! + 3^2*x^3*A(x)^3*exp(-0*x*A(x))/3! + 4^3*x^4*A(x)^4*exp(-1*x*A(x))/4! + 5^4*x^5*A(x)^5*exp(-2*x*A(x))/5! + 6^5*x^6*A(x)^6*exp(-3*x*A(x))/6! + ...

%e and

%e A(x) = 1 + 4*1*4^(-1)*x*A(x)*exp(-1*x*A(x))/1! + 4*2*5^0*x^2*A(x)^2*exp(-2*x*A(x))/2! + 4*3*6^1*x^3*A(x)^3*exp(-3*x*A(x))/3! + 4*4*7^2*x^4*A(x)^4*exp(-4*x*A(x))/4! + 4*5*8^3*x^5*A(x)^5*exp(-5*x*A(x))/5! + ...

%e RELATED SERIES.

%e exp(x*A(x)) = 1 + x + 3*x^2/2! + 31*x^3/3! + 469*x^4/4! + 9681*x^5/5! + 254701*x^6/6! + ... + A212917(n)*x^n/n! + ...

%t nmax = 20; A[_] = 0; Do[A[x_] = 1 + x*A[x] * E^(3*x*A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] * Range[0,nmax]! (* _Vaclav Kotesovec_, Oct 06 2023 *)

%o (PARI) /* a(n,m) = coefficient of x^n/n! in A(x)^m, here at m = 1 */

%o {a(n, m=1) = n!*sum(k=0, n, binomial(n+m, n-k)*m/(n+m) * 3^k * (n-k)^k/k!)}

%o for(n=0,20,print1(a(n),", "))

%o (PARI) {a(n) = my(A = (1/x) * serreverse( x/(1 + x*exp(3*x +O(x^(n+2)))) )); n!*polcoeff(A,n)}

%o for(n=0,20,print1(a(n),", "))

%Y Cf. A161633, A366232, A366234, A366235.

%Y Cf. A365773 (dual), A212917 (exp(x*A(x)).

%K nonn

%O 0,3

%A _Paul D. Hanna_, Oct 05 2023