%I #12 Oct 04 2023 19:04:02
%S 2,2,4,2,4,2,8,6,4,2,6,2,4,4,7,2,6,2,6,4,4,2,8,6,4,5,6,2,8,2,12,4,4,4,
%T 12,2,4,4,8,2,8,2,6,6,4,2,10,6,6,4,6,2,8,4,8,4,4,2,12,2,4,6,16,4,8,2,
%U 6,4,8,2,12,2,4,6,6,4,8,2,10,15,4,2,12,4
%N The number of ways to express n^n in the form a^b for positive integers a and b.
%e a(27) = 5, as "27^27 = a^b" has 5 positive integer solutions: 3^81, 27^27, 19683^9, 7625597484987^3, and (3^81)^1.
%p a:= n-> numtheory[tau](igcd(map(i-> i[2], ifactors(n)[2])[])*n):
%p seq(a(n), n=2..100); # _Alois P. Heinz_, Oct 03 2023
%t intPowCountPos[n_] := Module[{m, F, i, t},
%t m = n (GCD @@ FactorInteger[n][[All, 2]]);
%t t = 0;
%t While[Mod[m, 2] == 0,
%t t++;
%t m = m/2];
%t t = t + 1;
%t F = FactorInteger[m][[All, 2]];
%t If[m > 1,
%t For[i = 1, i <= Length[F], i++,
%t t = t (F[[i]] + 1)];
%t ];
%t Return[t]]
%o (Python)
%o from math import gcd
%o from sympy import divisor_count, factorint
%o def A366196(n): return divisor_count((m:=n*gcd(*factorint(n).values()))>>(t:=(m-1&~m).bit_length()))*(t+1) # _Chai Wah Wu_, Oct 04 2023
%Y Cf. A000312, A366161.
%K nonn
%O 2,1
%A _Andy Niedermaier_, Oct 03 2023