OFFSET
1,1
COMMENTS
List the possible lengths of line segments achievable by connecting integral coordinates on a Cartesian grid. Starting from the n-th length, a(n) is the smallest number of consecutively greater lengths required to form a simple polygon with all vertices on integral Cartesian coordinates.
LINKS
Gordon Hamilton, Rooting for NASA.
EXAMPLE
a(4) = 3 because i) the fourth, fifth and sixth lengths are sqrt(5), sqrt(8) and 3 and ii) a triangle can be created using edges with these three lengths.
a(5) = 4 because i) the fifth, sixth, seventh and eighth lengths are sqrt(8), 3, sqrt(10), sqrt(13) and ii) a quadrilateral can be created using edges with these four lengths and iii) the fifth, sixth and seventh lengths alone cannot create a simple polygon with integral Cartesian vertices.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gordon Hamilton, Sep 28 2023
STATUS
approved