OFFSET
0,3
FORMULA
A(x) satisfies QPochhammer(-1, x*A(x)^2) = 2*A(x).
a(n) ~ c * d^n / n^(3/2), where d = 7.2188305975020061051473056449576894316519... and c = 0.2182691546096422371919544994005940622002...
MATHEMATICA
nmax = 30; A[_] = 0; Do[A[x_] = Product[1 + x^k*A[x]^(2*k), {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
(* The constants {d, c}: *) {1/r, 1/(2*Sqrt[Pi*(1/s^2 + 2*r^2*s*Derivative[0, 2][QPochhammer][-1, r*s^2])])} /. FindRoot[{2*s == QPochhammer[-1, r*s^2], r*s*Derivative[0, 1][QPochhammer][-1, r*s^2] == 1}, {r, 1/8}, {s, 1}, WorkingPrecision -> 120]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Sep 26 2023
STATUS
approved