login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366026
G.f. A(x) satisfies A(x) = Product_{k>=1} (1 + x^k*A(x)^(2*k)).
2
1, 1, 3, 13, 64, 340, 1903, 11053, 65992, 402508, 2497207, 15709873, 99980007, 642535004, 4164018953, 27181480712, 178559253274, 1179546465168, 7830695860690, 52216823047741, 349584244515573, 2348869478981267, 15833924106623011, 107057382854642578, 725829177205070854
OFFSET
0,3
FORMULA
A(x) satisfies QPochhammer(-1, x*A(x)^2) = 2*A(x).
a(n) ~ c * d^n / n^(3/2), where d = 7.2188305975020061051473056449576894316519... and c = 0.2182691546096422371919544994005940622002...
MATHEMATICA
nmax = 30; A[_] = 0; Do[A[x_] = Product[1 + x^k*A[x]^(2*k), {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
(* The constants {d, c}: *) {1/r, 1/(2*Sqrt[Pi*(1/s^2 + 2*r^2*s*Derivative[0, 2][QPochhammer][-1, r*s^2])])} /. FindRoot[{2*s == QPochhammer[-1, r*s^2], r*s*Derivative[0, 1][QPochhammer][-1, r*s^2] == 1}, {r, 1/8}, {s, 1}, WorkingPrecision -> 120]
CROSSREFS
Sequence in context: A283667 A011272 A367062 * A200719 A065065 A020086
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Sep 26 2023
STATUS
approved