OFFSET
1,1
COMMENTS
It is conjectured that all trajectories will stop quite rapidly, mostly because the probability for 0 to appear in a divisor of a(n) increases with the size of a(n).
LINKS
Eric Angelini, Multiply with zero, personal blog "Cinquante signes" Sept. 2023.
Eric Angelini, Multiply with zero, personal blog "Cinquante signes" Sept. 2023. [Cached copy]
EXAMPLE
Trajectories of n for n = 1 to 40.
A "stop" means that the next term will contain two or more zeros.
n = 1 --> 1, 101, stop
n = 2 --> 2, 102, 1706, 20853, 210993, 3981053, stop
n = 3 --> 3, 103, stop
n = 4 --> 4, 104, 1308, 20654, 230898, 2654087, 35907393, 1196913103, stop
n = 5 --> 5, 105, 1507, 110137, 2410457, 34435107, 371092817, 4185108867, stop
n = 6 --> 6, 106, 2053, stop
n = 7 --> 7, 107, stop
n = 8 --> 8, 108, 1209, 13093, stop
n = 9 --> 9, 109, stop
n = 10 --> 10, 205, 4105, 50821, stop
n = 11 --> 11, 1011, 30337, 1319023, stop
n = 12 --> 12, 206, stop
n = 13 --> 13, 1013, stop
n = 14 --> 14, 207, 2309, stop
n = 15 --> 15, 305, 5061, 70723, 1970359, stop
n = 16 --> 16, 208, 2608, 32608, 408152, 6260652, 64410972, 1160555267, stop
n = 17 --> 17, 1017, 11309, 263043, 2657099, 43061793, 1435393103, stop
n = 18 --> 18, 209, 11019, 303673, 5147059, stop
n = 19 --> 19, 1019, stop
n = 20 --> 20, 405, 4509, 167027, 2230749, 24786109, stop
n = 21 --> 21, 307, stop
n = 22 --> 22, 1022, 14073, 304691, 17017923, 305672641, 3469610881, 43707939613, 1265393034541, stop
n = 23 --> 23, 1023, 11093, stop
n = 24 --> 24, 308, 4077, 45309, 1104119, stop
n = 25 --> 25, 505, stop
n = 26 --> 26, 1026, 11409, stop
n = 27 --> 27, 309, stop
n = 28 --> 28, 407, 11037, 130849, 1707697, 17770961, 1301366997, 14459633309, 149743096563, 3049914365521, 44661214906829, stop
n = 29 --> 29, 1029, 14707, 191077, stop
n = 30 --> 30, 506, 11046, 140789, 11012799, 118290931, 1210977611, stop
n = 31 --> 31, 1031, stop
n = 32 --> 32, 408, 5108, 127704, 1360939, 18107519, stop
n = 33 --> 33, 1033, stop
n = 34 --> 34, 1034, 11094, 129086, 1590817, 21075277, 253919083, 15701617319, 199307878383, 2229089415827, 33269991281067, stop
n = 35 --> 35, 507, 13039, 170767, stop
n = 36 --> 36, 409, stop
n = 37 --> 37, 1037, 17061, 305687, stop
n = 38 --> 38, 1038, 17306, 208653, 3069551, stop
n = 39 --> 39, 1039, stop
n = 40 --> 40, 508, 12704, 158808, 1985108, 20992554, 306997518, 5116625306, 13032065196793281, stop
etc.
MATHEMATICA
Table[Last@Most@NestWhileList[(d=Divisors@#;
Min[Select[FromDigits@Flatten[IntegerDigits/@Riffle[#, 0]]&/@Table[{d[[k]], d[[Length@d-k+1]]}, {k, Length@d}], Count[IntegerDigits@#, 0]<2&]])&, n, IntegerQ], {n, 40}]
PROG
(Python)
from sympy import divisors
def a(n):
k = n
while True:
s = set()
for d in divisors(k, generator=True):
v, w = str(d), str(k//d)
if "0" not in v and "0" not in w:
s.add(int(v + "0" + w))
if len(s) == 0: return k
k = min(s)
print([a(n) for n in range(1, 41)]) # Michael S. Branicky, Sep 26 2023
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Eric Angelini and Giorgos Kalogeropoulos, Sep 25 2023
STATUS
approved