login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365994
The n-th term of the sequence is the last term of n's trajectory under the "multiply with zero" rules explained in A365993.
2
101, 3981053, 103, 1196913103, 4185108867, 2053, 107, 13093, 109, 50821, 1319023, 206, 1013, 2309, 1970359, 1160555267, 1435393103, 5147059, 1019, 24786109, 307, 1265393034541, 11093, 1104119, 505, 11409, 309, 44661214906829, 191077, 1210977611, 1031, 18107519, 1033, 33269991281067, 170767
OFFSET
1,1
COMMENTS
It is conjectured that all trajectories will stop quite rapidly, mostly because the probability for 0 to appear in a divisor of a(n) increases with the size of a(n).
LINKS
Eric Angelini, Multiply with zero, personal blog "Cinquante signes" Sept. 2023.
Eric Angelini, Multiply with zero, personal blog "Cinquante signes" Sept. 2023. [Cached copy]
EXAMPLE
Trajectories of n for n = 1 to 40.
A "stop" means that the next term will contain two or more zeros.
n = 1 --> 1, 101, stop
n = 2 --> 2, 102, 1706, 20853, 210993, 3981053, stop
n = 3 --> 3, 103, stop
n = 4 --> 4, 104, 1308, 20654, 230898, 2654087, 35907393, 1196913103, stop
n = 5 --> 5, 105, 1507, 110137, 2410457, 34435107, 371092817, 4185108867, stop
n = 6 --> 6, 106, 2053, stop
n = 7 --> 7, 107, stop
n = 8 --> 8, 108, 1209, 13093, stop
n = 9 --> 9, 109, stop
n = 10 --> 10, 205, 4105, 50821, stop
n = 11 --> 11, 1011, 30337, 1319023, stop
n = 12 --> 12, 206, stop
n = 13 --> 13, 1013, stop
n = 14 --> 14, 207, 2309, stop
n = 15 --> 15, 305, 5061, 70723, 1970359, stop
n = 16 --> 16, 208, 2608, 32608, 408152, 6260652, 64410972, 1160555267, stop
n = 17 --> 17, 1017, 11309, 263043, 2657099, 43061793, 1435393103, stop
n = 18 --> 18, 209, 11019, 303673, 5147059, stop
n = 19 --> 19, 1019, stop
n = 20 --> 20, 405, 4509, 167027, 2230749, 24786109, stop
n = 21 --> 21, 307, stop
n = 22 --> 22, 1022, 14073, 304691, 17017923, 305672641, 3469610881, 43707939613, 1265393034541, stop
n = 23 --> 23, 1023, 11093, stop
n = 24 --> 24, 308, 4077, 45309, 1104119, stop
n = 25 --> 25, 505, stop
n = 26 --> 26, 1026, 11409, stop
n = 27 --> 27, 309, stop
n = 28 --> 28, 407, 11037, 130849, 1707697, 17770961, 1301366997, 14459633309, 149743096563, 3049914365521, 44661214906829, stop
n = 29 --> 29, 1029, 14707, 191077, stop
n = 30 --> 30, 506, 11046, 140789, 11012799, 118290931, 1210977611, stop
n = 31 --> 31, 1031, stop
n = 32 --> 32, 408, 5108, 127704, 1360939, 18107519, stop
n = 33 --> 33, 1033, stop
n = 34 --> 34, 1034, 11094, 129086, 1590817, 21075277, 253919083, 15701617319, 199307878383, 2229089415827, 33269991281067, stop
n = 35 --> 35, 507, 13039, 170767, stop
n = 36 --> 36, 409, stop
n = 37 --> 37, 1037, 17061, 305687, stop
n = 38 --> 38, 1038, 17306, 208653, 3069551, stop
n = 39 --> 39, 1039, stop
n = 40 --> 40, 508, 12704, 158808, 1985108, 20992554, 306997518, 5116625306, 13032065196793281, stop
etc.
MATHEMATICA
Table[Last@Most@NestWhileList[(d=Divisors@#;
Min[Select[FromDigits@Flatten[IntegerDigits/@Riffle[#, 0]]&/@Table[{d[[k]], d[[Length@d-k+1]]}, {k, Length@d}], Count[IntegerDigits@#, 0]<2&]])&, n, IntegerQ], {n, 40}]
PROG
(Python)
from sympy import divisors
def a(n):
k = n
while True:
s = set()
for d in divisors(k, generator=True):
v, w = str(d), str(k//d)
if "0" not in v and "0" not in w:
s.add(int(v + "0" + w))
if len(s) == 0: return k
k = min(s)
print([a(n) for n in range(1, 41)]) # Michael S. Branicky, Sep 26 2023
CROSSREFS
Sequence in context: A138120 A266609 A082521 * A262645 A138826 A292686
KEYWORD
base,nonn
AUTHOR
STATUS
approved