%I #19 Sep 25 2023 04:49:22
%S 1,7,9,13,71,57,119,373,791,597,1199,3733,7911,12637,70879,90293,
%T 63431,54477,118159,706053,1235351,3745117,7915039,9305013,13101671,
%U 37700557,79233519,126411173,375470391,1125156797,3708385599,11236128533,37078709511,112359569837
%N Multiply each term by 3 and erase the leftmost digit of the result: this leaves the sequence unchanged.
%C This is the lexicographically earliest sequence of distinct positive terms with this property.
%C If the erasure of the leftmost digit leaves one or more leading zeros in the result, erase also those zeros.
%H Alois P. Heinz, <a href="/A365986/b365986.txt">Table of n, a(n) for n = 1..2000</a>
%e a(1) = 1 and 3*1 = 3; erasing the leftmost digit 3 leaves nothing;
%e a(2) = 7 and 3*7 = 21; erasing the leftmost digit 2 leaves 1;
%e a(3) = 9 and 3*9 = 27; erasing the leftmost digit 2 leaves 7;
%e a(4) = 13 and 3*13 = 39; erasing the leftmost digit 3 leaves 9;
%e a(5) = 71 and 3*71 = 213; erasing the leftmost digit 2 leaves 13; etc.
%e We see that the last column of the above table is the sequence itself.
%p a:= proc(n) option remember; `if`(n=1, 1,
%p (t> parse(cat(3irem(t,3),t))/3)(a(n1)))
%p end:
%p seq(a(n), n=1..35); # _Alois P. Heinz_, Sep 24 2023
%Y Cf. A365987, A317591.
%K nonn,base,easy
%O 1,2
%A _Eric Angelini_, Sep 24 2023
%E More terms from _Alois P. Heinz_, Sep 24 2023
