login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365934
Number of 4-cycles in the n-Sierpinski carpet graph.
0
0, 16, 192, 1744, 14592, 118672, 955200, 7659088, 61325184, 490758928, 3926543808, 31413767632, 251314392576, 2010527895184, 16084261425216, 128674206192976, 1029393993917568, 8235152984461840, 65881226975058624, 527049825098560720, 4216398628682760960
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Graph Cycle.
Eric Weisstein's World of Mathematics, Sierpinski Carpet Graph.
FORMULA
a(n) = 8/35*(5 + 2^(1 + 3*n) - 7*3^n).
a(n) = 12*a(n-1) - 35*a(n-1) + 24*a(n-2).
G.f.: -16*x^2/((-1+x)*(-1+3*x)*(-1+8*x)).
a(n) = 16*A016214(n-2). - R. J. Mathar, Feb 18 2024
MATHEMATICA
Table[8/35 (5 + 2^(1 + 3 n) - 7 3^n), {n, 20}]
LinearRecurrence[{12, -35, 24}, {0, 16, 192}, 20]
CoefficientList[Series[-16 x/((-1 + x) (-1 + 3 x) (-1 + 8 x)), {x, 0, 20}], x]
CROSSREFS
Sequence in context: A305590 A232426 A317008 * A316873 A071081 A317601
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Dec 07 2023
STATUS
approved