login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Expansion of (1/x) * Series_Reversion( x*(1-x)^5/(1+x)^2 ).
2

%I #10 Sep 20 2023 10:01:18

%S 1,7,75,959,13512,202433,3164018,51010415,842090988,14163385916,

%T 241843189651,4181341506009,73054000725300,1287786922627590,

%U 22876030462690500,409093644922627407,7358978253387945404,133067774551068558740,2417375777620571832476

%N Expansion of (1/x) * Series_Reversion( x*(1-x)^5/(1+x)^2 ).

%F a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(5*n+k+4,k) * binomial(2*(n+1),n-k).

%o (PARI) a(n) = sum(k=0, n, binomial(5*n+k+4, k)*binomial(2*(n+1), n-k))/(n+1);

%Y Cf. A032349, A365839, A365840.

%Y Cf. A365766.

%K nonn

%O 0,2

%A _Seiichi Manyama_, Sep 20 2023