Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Nov 16 2023 05:54:46
%S 6,8,2,8,4,2,7,1,2,4,7,4,6,1,9,0,0,9,7,6,0,3,3,7,7,4,4,8,4,1,9,3,9,6,
%T 1,5,7,1,3,9,3,4,3,7,5,0,7,5,3,8,9,6,1,4,6,3,5,3,3,5,9,4,7,5,9,8,1,4,
%U 6,4,9,5,6,9,2,4,2,1,4,0,7,7
%N Decimal expansion of 2*(2 + sqrt(2)).
%C The greater one of the solutions to x^2 - 8 * x + 8 = 0. The other solution is A157259 - 3 = 1.17157... . - _Michal Paulovic_, Nov 14 2023
%F Equals 2*sqrt(2)*(1 + sqrt(2)) = 2*(2 + sqrt(2)). This is an integer in the quadratic number field Q(sqrt(2)).
%F Equals lim_{n->oo} A057084(n + 1)/A057084(n).
%F Equals continued fraction with periodic term [[6], [1, 4]]. - _Peter Luschny_, Nov 13 2023
%F Equals -3+A157258 = 1+A156035 = 2+A090488 = 3+A086178 = 4+A010466 = 6+A163960. - _Alois P. Heinz_, Nov 15 2023
%e 6.8284271247461900976033774484193961571393437507538961...
%p evalf(4+sqrt(8), 130); # _Alois P. Heinz_, Nov 13 2023
%t First[RealDigits[2*(2 + Sqrt[2]), 10, 99]] (* _Stefano Spezia_, Nov 11 2023 *)
%o (PARI) \\ Works in v2.13 and higher; n = 100 decimal places
%o my(n=100); digits(floor(10^n*(4+quadgen(32)))) \\ _Michal Paulovic_, Nov 14 2023
%Y Cf. A000129, A002193, A014176, A049310, A057084, A157259.
%Y Cf. A156035, A163960.
%Y Essentially the same as A157258, A090488, A086178 and A010466.
%K nonn,cons,easy
%O 1,1
%A _Wolfdieter Lang_, Nov 13 2023