login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total number of partitions of [n-s] whose block minima sum to s, summed over all s.
3

%I #14 Dec 16 2023 20:12:21

%S 1,0,1,1,1,2,3,6,11,23,46,97,205,448,1004,2339,5661,14291,37507,

%T 101962,285386,817772,2386946,7069893,21195092,64225525,196636559,

%U 608551084,1905848637,6049696252,19501015441,63960251538,213822965681,729536174204,2541833303563

%N Total number of partitions of [n-s] whose block minima sum to s, summed over all s.

%H Alois P. Heinz, <a href="/A365821/b365821.txt">Table of n, a(n) for n = 0..350</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>

%F a(7) = 6: 12|3, 134|2, 13|24, 14|23, 1|234, 123456.

%F a(8) = 11: 124|3, 12|34, 1345|2, 134|25, 135|24, 13|245, 145|23, 14|235, 15|234, 1|2345, 1234567.

%p b:= proc(n, i, t, m) option remember; `if`(n=0, t^(m-i+1),

%p `if`((i+m)*(m+1-i)/2<n or i>n, 0, `if`(t=0, 0,

%p t*b(n, i+1, t, m))+ b(n-i, i+1, t+1, m)))

%p end:

%p a:= n-> add(b(k, 1, 0, n-k), k=0..n):

%p seq(a(n), n=0..42);

%Y Antidiagonal sums of A124327.

%Y Cf. A368102.

%K nonn

%O 0,6

%A _Alois P. Heinz_, Dec 14 2023