login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dirichlet inverse of bijective base-3 reverse of n (A263273).
3

%I #9 Sep 19 2023 15:32:33

%S 1,-2,-3,0,-7,6,-5,0,0,18,-19,0,-13,-2,21,0,-25,0,-11,-8,15,62,-23,0,

%T 32,26,0,40,-55,-54,-37,-32,57,54,-3,0,-31,-14,39,0,-67,6,-49,-96,0,

%U 58,-61,0,-18,-156,75,0,-79,0,237,-32,33,182,-65,24,-47,74,0,160,123,-186,-41,16,69,230,-77,0,-35,62,-96,144

%N Dirichlet inverse of bijective base-3 reverse of n (A263273).

%H Antti Karttunen, <a href="/A365803/b365803.txt">Table of n, a(n) for n = 1..19683</a>

%F a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A263273(n/d) * a(d).

%o (PARI)

%o A030102(n) = { my(r=[n%3]); while(0<n\=3, r=concat(n%3, r)); subst(Polrev(r),x,3); };

%o A263273 = n -> if(!n,n,A030102(n/(3^valuation(n,3))) * (3^valuation(n, 3)));

%o memoA365803 = Map();

%o A365803(n) = if(1==n,1,my(v); if(mapisdefined(memoA365803,n,&v), v, v = -sumdiv(n,d,if(d<n,A263273(n/d)*A365803(d),0)); mapput(memoA365803,n,v); (v)));

%Y Cf. A263273, A323239 (parity of terms), A365804.

%Y Cf. also A365711.

%K sign

%O 1,2

%A _Antti Karttunen_, Sep 19 2023