Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Sep 20 2023 11:52:57
%S 6,12,10,18,24,14,20,36,15,48,54,28,40,72,21,22,50,96,108,45,26,56,80,
%T 144,30,44,162,100,33,75,192,34,35,216,63,52,98,38,39,112,160,288,42,
%U 60,88,324,200,135,46,384,68,250,432,51,90,104,196,76,486,55,147
%N a(n) = A286708(n) divided by its squarefree kernel.
%C Permutation of numbers that are not prime powers A024619.
%H Michael De Vlieger, <a href="/A365787/b365787.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A286708(n)/A007947(A286708(n)) = A286708(n)/A365786(n).
%F Let b(n) = A286708(n) and let squarefree kernel rad(n) = A007947(n). a(n) >= n such that rad(a(n)) | n.
%e a(1) = 2 since b(1)/rad(b(1)) = 36/6 = 6.
%e a(2) = 3 since b(2)/rad(b(2)) = 72/6 = 12.
%e a(3) = 2 since b(3)/rad(b(3)) = 100/10 = 10.
%e a(4) = 4 since b(4)/rad(b(4)) = 108/6 = 18.
%e a(5) = 2 since b(5)/rad(b(5)) = 144/6 = 24.
%e a(6) = 6 since b(6)/rad(b(6)) = 196/14 = 14, etc
%t nn = 5000;
%t s = Rest@ Select[Union@ Flatten@
%t Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}],
%t Not @* PrimePowerQ];
%t t = Select[Range[nn/6], And[SquareFreeQ[#], CompositeQ[#]] &];
%t Map[FirstPosition[t, Times @@ FactorInteger[#][[All, 1]]][[1]] &, s]
%Y Cf. A007947, A024619, A120944, A286708, A365786.
%K nonn
%O 1,1
%A _Michael De Vlieger_, Sep 19 2023