login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A365772 Expansion of g.f. A(x) satisfying A(x) = 1 + x*A(x)/(1 - 2*x*A(x))^2. 6
1, 1, 5, 25, 137, 801, 4893, 30857, 199377, 1313089, 8782389, 59491257, 407308377, 2814044897, 19594237133, 137364464681, 968743846561, 6868059398273, 48921561805413, 349942779608153, 2512722402972457, 18104571857859233, 130856263145140861, 948520413875412681 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Related identities which hold formally for all Maclaurin series F(x):
(1) F(x) = (1/x) * Sum{n>=1} n^(n-1) * x^n * F(x)^n / (1 + n*x*F(x))^(n+1),
(2) F(x) = (2/x) * Sum{n>=1} n*(n+1)^(n-2) * x^n * F(x)^n / (1 + (n+1)*x*F(x))^(n+1),
(3) F(x) = (3/x) * Sum{n>=1} n*(n+2)^(n-2) * x^n * F(x)^n / (1 + (n+2)*x*F(x))^(n+1),
(4) F(x) = (4/x) * Sum{n>=1} n*(n+3)^(n-2) * x^n * F(x)^n / (1 + (n+3)*x*F(x))^(n+1),
(5) F(x) = (k/x) * Sum{n>=1} n*(n+k-1)^(n-2) * x^n * F(x)^n / (1 + (n+k-1)*x*F(x))^(n+1) for all fixed nonzero k.
LINKS
FORMULA
a(n) = Sum{k=0..n} binomial(n+1, n-k)/(n+1) * binomial(2*n-k-1, k) * 2^k.
Let A(x)^m = Sum_{n>=0} a(n,m) * x^n then a(n,m) = Sum_{k=0..n} binomial(n+m, n-k)*m/(n+m) * binomial(2*n-k-1, k) * 2^k.
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = 1 + x*A(x)/(1 - 2*x*A(x))^2.
(2) A(x) = (1/x) * Series_Reversion( x/(1 + x/(1 - 2*x)^2) ).
(3) A( x/(1 + x/(1 - 2*x)^2) ) = 1 + x/(1 - 2*x)^2.
(4) A(x) = 1 + (m+1) * Sum{n>=1} n*(n+m)^(n-2) * x^n * A(x)^n / (1 + (n+m-2)*x*A(x))^(n+1) for all fixed nonnegative m.
(4.a) A(x) = 1 + Sum{n>=1} n^(n-1) * x^n * A(x)^n / (1 + (n-2)*x*A(x))^(n+1).
(4.b) A(x) = 1 + 2 * Sum{n>=1} n*(n+1)^(n-2) * x^n * A(x)^n / (1 + (n-1)*x*A(x))^(n+1).
(4.c) A(x) = 1 + 3 * Sum{n>=1} n*(n+2)^(n-2) * x^n * A(x)^n / (1 + n*x*A(x))^(n+1).
(4.d) A(x) = 1 + 4 * Sum{n>=1} n*(n+3)^(n-2) * x^n * A(x)^n / (1 + (n+1)*x*A(x))^(n+1).
a(n) ~ 7^(n + 3/2) * sqrt(3/((-1916 + (1833997600 - 95194848*sqrt(69))^(1/3) + 2^(5/3)*(57312425 + 2974839*sqrt(69))^(1/3))*Pi)) / (2 * n^(3/2) * (1 - 53*(2/(3*(-45 + 161*sqrt(69))))^(1/3) + ((-45 + 161*sqrt(69))/2)^(1/3)/3^(2/3))^n). - Vaclav Kotesovec, Oct 05 2023
EXAMPLE
G.f.: A(x) = 1 + x + 5*x^2 + 25*x^3 + 137*x^4 + 801*x^5 + 4893*x^6 + 30857*x^7 + 199377*x^8 + 1313089*x^9 + 8782389*x^10 + ...
where A(x) satisfies A(x) = 1 + x*A(x)/(1 - 2*x*A(x))^2
also
A(x) = 1 + x*A(x)/(1 + (-1)*x*A(x))^2 + 2*x^2*A(x)^2/(1 + 0*x*A(x))^3 + 3^2*x^3*A(x)^3/(1 + 1*x*A(x))^4 + 4^3*x^4*A(x)^4/(1 + 2*x*A(x))^5 + 5^4*x^5*A(x)^5/(1 + 3*x*A(x))^6 + 6^5*x^6*A(x)^6/(1 + 4*x*A(x))^7 + ...
and
A(x) = 1 + 3*1*3^(-1)*x*A(x)/(1 + 1*x*A(x))^2 + 3*2*4^0*x^2*A(x)^2/(1 + 2*x*A(x))^3 + 3*3*5^1*x^3*A(x)^3/(1 + 3*x*A(x))^4 + 3*4*6^2*x^4*A(x)^4/(1 + 4*x*A(x))^5 + 3*5*7^3*x^5*A(x)^5/(1 + 5*x*A(x))^6 + ...
MATHEMATICA
nmax = 30; A[_] = 0; Do[A[x_] = 1 + x*A[x]/(1 - 2*x*A[x])^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Oct 05 2023 *)
PROG
(PARI) {a(n) = sum(k=0, n, binomial(n+1, n-k)/(n+1) * binomial(2*n-k-1, k) * 2^k)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A = (1/x) * serreverse( x/(1 + x/(1 - 2*x +O(x^(n+2)) )^2) ) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A366232 (dual).
Sequence in context: A275905 A124891 A358504 * A094094 A344249 A081683
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 04 2023
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 6 00:26 EDT 2024. Contains 375701 sequences. (Running on oeis4.)