login
Expansion of (1/x) * Series_Reversion( x*(1-x)/(1+x)^5 ).
7

%I #10 Sep 18 2023 08:58:55

%S 1,6,52,530,5919,70098,864784,10994490,143042020,1895316632,

%T 25487708844,346976558318,4772478619146,66222166440780,

%U 925880434336320,13030945427540170,184467676431001644,2624828100099166536,37521220349342729680,538573138719587026440

%N Expansion of (1/x) * Series_Reversion( x*(1-x)/(1+x)^5 ).

%F a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(n+k,k) * binomial(5*(n+1),n-k).

%o (PARI) a(n) = sum(k=0, n, binomial(n+k, k)*binomial(5*(n+1), n-k))/(n+1);

%Y Cf. A000108, A006318, A107111, A263843, A365754.

%Y Cf. A365753.

%K nonn

%O 0,2

%A _Seiichi Manyama_, Sep 18 2023