login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the smallest number k such that k*n is an exponentially squarefree number (A209061).
5

%I #10 Sep 16 2023 02:23:00

%S 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

%T 1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

%U 1,1,1,1,1,1,1,1,1,1,1,2,3,1,1,1,1,1,1

%N a(n) is the smallest number k such that k*n is an exponentially squarefree number (A209061).

%H Amiram Eldar, <a href="/A365685/b365685.txt">Table of n, a(n) for n = 1..10000</a>

%F Multiplicative with a(p^e) = p^A081221(e).

%F a(n) = A365684(n)/n.

%F a(n) >= 1, with equality if and only if n is an exponentially squarefree number (A209061).

%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + Sum_{k>=1} (p^f(k) - p^f(k-1))/p^k) = 1.06562841319..., where f(k) = A081221(k) and f(0) = 0.

%t f[p_, e_] := Module[{k = e}, While[! SquareFreeQ[k], k++]; p^(k-e)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]

%o (PARI) s(e) = {my(k = e); while(!issquarefree(k), k++); k - e;};

%o a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^s(f[i,2]));}

%Y Cf. A081221, A209061, A365684.

%K nonn,easy,mult

%O 1,16

%A _Amiram Eldar_, Sep 15 2023