|
|
A365633
|
|
The sum of divisors of n that are terms of A072873.
|
|
2
|
|
|
1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 4, 3, 1, 1, 1, 7, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 1, 15, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 7, 4, 1, 1, 3, 1, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
The number of these divisors is A365632(n) and the largest of them is A327939(n).
|
|
LINKS
|
|
|
FORMULA
|
Multiplicative with a(p^e) = (p^(floor(e/p)+1) - 1)/(p - 1).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (A332653(p)/(p^(p-1)-1) - 1/(p*(p-1))) = 2.253624924813... .
|
|
MATHEMATICA
|
f[p_, e_] := (p^(Floor[e/p] + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
|
|
PROG
|
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(1+f[i, 2] \ f[i, 1])-1)/(f[i, 1] - 1)); }
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,mult
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|