login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A365629
Number of 4 X n mazes that can be navigated from the top left corner to the bottom right corner.
2
1, 216, 28942, 3329245, 358911148, 37502829018, 3856945416544, 393396697543644, 39951066751274152, 4047887027105625168, 409638762069161924728, 41428094401248851559736, 4188336537335577744595384, 423360539638841208001947048, 42789587016771330584001089176
OFFSET
1,2
COMMENTS
If the maze can be navigated in multiple ways, it is still only counted once.
Sample 4 X 3 maze that can be navigated from the top left corner to the bottom right corner:
+---+---+---+---+
| S---+ | |
+---+ | +---+ +
| +---+ | |
+ +---+ | +---+
| | +---F |
+---+---+---+---+
Sample 4 X 3 maze that cannot be navigated from the top left corner to the bottom right corner:
+---+---+---+---+
| S |
+---+ +---+ +
| | | |
+ +---+ +---+
| | F |
+---+---+---+---+
a(n)/2^(7*n-4) is the probability that the top left and bottom right vertices of the 4 X n grid graph are still connected after each edge has been independently deleted with probability 1/2. - Pontus von Brömssen, May 25 2024
FORMULA
a(n) = 342*a(n-1) - 50227*a(n-2) + 4267092*a(n-3) - 237414878*a(n-4) + 9263866752*a(n-5) - 264710439296*a(n-6) + 5705797123488*a(n-7) - 94777393717760*a(n-8) + 1232582325433344*a(n-9) - 12699878523256832*a(n-10) + 104584257652924416*a(n-11) - 692664147070386176*a(n-12) + 3704337209642582016*a(n-13) - 16028068661845557248*a(n-14) + 56107328210955927552*a(n-15) - 158569903559869988864*a(n-16) + 360259507824309043200*a(n-17) - 653476498517472051200*a(n-18) + 937026705910470279168*a(n-19) - 1047482862825245769728*a(n-20) + 895397884025628524544*a(n-21) - 569457883581280944128*a(n-22) + 258763464527314944000*a(n-23) - 78758950283455234048*a(n-24) + 14267403619509731328*a(n-25) - 1152921504606846976*a(n-26) for n >= 27. - Pontus von Brömssen, May 25 2024
CROSSREFS
Fourth row/column of A373036.
Sequence in context: A229408 A269285 A133052 * A078204 A230466 A201248
KEYWORD
nonn,easy
AUTHOR
Eugene Nonko, Oct 25 2023
EXTENSIONS
a(8) and beyond from Pontus von Brömssen, May 25 2024
STATUS
approved