Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Sep 09 2023 11:34:01
%S 1,2,2,3,2,4,2,3,3,4,2,6,2,4,4,4,2,6,2,6,4,4,2,6,3,4,3,6,2,8,2,4,4,4,
%T 4,9,2,4,4,6,2,8,2,6,6,4,2,8,3,6,4,6,2,6,4,6,4,4,2,12,2,4,6,5,4,8,2,6,
%U 4,8,2,9,2,4,6,6,4,8,2,8,4,4,2,12,4,4,4
%N The number of exponentially odd divisors of the smallest exponentially odd number divisible by n.
%C First differs from A049599 and A282446 at n = 32, and from A353898 at n = 64.
%H Amiram Eldar, <a href="/A365551/b365551.txt">Table of n, a(n) for n = 1..10000</a>
%H Vaclav Kotesovec, <a href="/A365551/a365551.jpg">Graph - the asymptotic ratio (100000 terms)</a>.
%F a(n) = A322483(A356191(n)).
%F Multiplicative with a(p^e) = ceiling((e+3)/2).
%F Dirichlet g.f.: zeta(s) * zeta(2*s) * Product_{p prime} (1 + 1/p^s - 1/p^(3*s)).
%F From _Vaclav Kotesovec_, Sep 09 2023: (Start)
%F Let f(s) = Product_{p prime} (1 - 1/p^(2*s) - 1/p^(3*s) + 1/p^(4*s)).
%F Dirichlet g.f.: zeta(s)^2 * zeta(2*s) * f(s).
%F Sum_{k=1..n} a(k) ~ (Pi^2 * f(1) * n / 6) * (log(n) + 2*gamma - 1 + 12*zeta'(2)/Pi^2 + f'(1)/f(1)), where
%F f(1) = Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = 0.5358961538283379998085026313185459506482223745141452711510108346133288119...,
%F f'(1) = f(1) * Sum_{p prime} (-4 + 3*p + 2*p^2) * log(p) / (1 - p - p^2 + p^4) = f(1) * 1.452592479445159559037143959382854734148246511441192913672347667991...
%F and gamma is the Euler-Mascheroni constant A001620. (End)
%t f[p_, e_] := Ceiling[(e + 3)/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o (PARI) a(n) = vecprod(apply(x -> ceil((x+3)/2), factor(n)[, 2]));
%Y Cf. A322483, A356191.
%Y Cf. A049599, A282446, A353898.
%K nonn,easy,mult
%O 1,2
%A _Amiram Eldar_, Sep 08 2023