login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^s - 1/p^(3*s)).
4

%I #20 Sep 09 2023 05:38:12

%S 1,2,2,2,2,4,2,1,2,4,2,4,2,4,4,1,2,4,2,4,4,4,2,2,2,4,1,4,2,8,2,1,4,4,

%T 4,4,2,4,4,2,2,8,2,4,4,4,2,2,2,4,4,4,2,2,4,2,4,4,2,8,2,4,4,1,4,8,2,4,

%U 4,8,2,2,2,4,4,4,4,8,2,2,1,4,2,8,4,4,4

%N Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^s - 1/p^(3*s)).

%C The number of unitary divisors of n that are cubefree numbers (A004709). - _Amiram Eldar_, Sep 06 2023

%H Vaclav Kotesovec, <a href="/A365498/b365498.txt">Table of n, a(n) for n = 1..10000</a>

%F Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^(2*s) - 1/p^(3*s) + 1/p^(4*s)).

%F Let f(s) = Product_{p prime} (1 - 1/p^(2*s) - 1/p^(3*s) + 1/p^(4*s)).

%F Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where

%F f(1) = Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = 0.5358961538283379998085026313185459506482223745141452711510108346133288...,

%F f'(1) = f(1) * Sum_{p prime} (-4 + 3*p + 2*p^2) * log(p) / (1 - p - p^2 + p^4) = f(1) * 1.4525924794451595590371439593828547341482465114411929136723476679...

%F and gamma is the Euler-Mascheroni constant A001620.

%F Multiplicative with a(p^e) = 2 if e <= 2, and 1 otherwise. - _Amiram Eldar_, Sep 06 2023

%t f[p_, e_] := If[e <= 2, 2, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 06 2023 *)

%o (PARI) for(n=1, 100, print1(direuler(p=2, n, 1/(1-X) * (1 + X - X^3))[n], ", "))

%Y Cf. A001620, A004709, A056671, A365488, A365499.

%K nonn,easy,mult

%O 1,2

%A _Vaclav Kotesovec_, Sep 06 2023