login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365495
Square array read by ascending antidiagonals: T(n,k) is the parity of the k-th iterate of the 3x+1 function started at n, with n >= 1 and k >= 0.
4
1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1
OFFSET
1
COMMENTS
The 3x+1 function (A014682), denoted by T(x) in the literature, is defined as T(x) = (3x+1)/2 if x is odd, T(x) = x/2 if x is even.
As reported by Kontorovich and Lagarias (2009 and 2010), a result due to Terras and Everett is that the sequence of the first m terms in each row is periodic in n with period 2^m, with each of the 2^m possible binary vectors occurring exactly once (as the first m terms of a row) per period.
For example, for m = 3, the first 3 terms in rows 1..2^3 are respectively [1,0,1], [0,1,0], [1,1,0], [0,0,1], [1,0,0], [0,1,1], [1,1,1] and [0,0,0], and this pattern repeats from row 2^3 + 1 onwards.
As a consequence, Kontorovich and Lagarias note, each integer is uniquely determined by the sequence of the parity of its orbit, i.e., n is uniquely determined by the n-th row of the present array.
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..11325 (antidiagonals 1..150 of the array, flattened)
C. J. Everett, Iteration of the number-theoretic function f(2n) = n, f(2n + 1) = 3n + 2, Advances in Mathematics, Vol. 25, Issue 1, July 1977, pp. 42-45, and in Jeffrey C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, American Mathematical Society, 2010, pp. 225-230.
Alex V. Kontorovich and Jeffrey C. Lagarias, Stochastic Models for the 3x+1 and 5x+1 Problems, arXiv:0910.1944 [math.NT], 2009, pp. 7-8, and in Jeffrey C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, American Mathematical Society, 2010, pp. 136-137.
Riho Terras, A stopping time problem on the positive integers, Acta Arithmetica 30, 1976, pp. 241-252.
FORMULA
T(n,k) = A365484(n,k) mod 2.
EXAMPLE
The array begins:
n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
-----------------------------------------------------
1 | 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...
2 | 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...
3 | 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...
4 | 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...
5 | 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...
6 | 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...
7 | 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, ...
8 | 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...
9 | 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, ...
10 | 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...
11 | 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, ...
12 | 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...
13 | 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...
14 | 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, ...
15 | 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, ...
...
MATHEMATICA
A365495list[dmax_]:=With[{a=Mod[Array[NestList[If[OddQ[#], (3#+1)/2, #/2]&, dmax-#, #]&, dmax, 0], 2]}, Array[Diagonal[a, #]&, dmax, 1-dmax]]; A365495list[20] (* Generates 20 antidiagonals *)
CROSSREFS
Cf. A014682, A347283 (equivalent for the Collatz function), A365484, A365992, A371689 (main diagonal).
Sequence in context: A267776 A072792 A254113 * A267037 A200246 A267292
KEYWORD
nonn,easy,tabl
AUTHOR
Paolo Xausa, Sep 06 2023
STATUS
approved