login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Lexicographically earliest infinite sequence such that a(i) = a(j) => A365425(i) = A365425(j) and A365427(i) = A365427(j) for all i, j >= 0.
4

%I #10 Sep 04 2023 18:23:39

%S 1,1,1,2,1,3,2,4,1,5,3,6,2,7,4,2,1,8,5,9,3,10,6,3,2,11,7,7,4,12,2,4,1,

%T 13,8,14,5,15,9,5,3,16,10,11,6,17,3,6,2,18,11,10,7,19,7,7,4,17,12,20,

%U 2,7,4,21,1,22,13,23,8,24,14,8,5,25,15,18,9,26,5,9,3,27,16,16,10,28,11,10,6,29,17,30,3,10,6

%N Lexicographically earliest infinite sequence such that a(i) = a(j) => A365425(i) = A365425(j) and A365427(i) = A365427(j) for all i, j >= 0.

%C Restricted growth sequence transform of the ordered pair [A365425(n), A365427(n)].

%C Restricted growth sequence transform of the function f(n) = A336390(A163511(n)).

%C For all i, j: a(i) = a(j) => A365385(i) = A365385(j).

%H Antti Karttunen, <a href="/A365395/b365395.txt">Table of n, a(n) for n = 0..65537</a>

%F For all n >= 1, a(n) = a(2*n) = a(A000265(n)).

%o (PARI)

%o up_to = 65537;

%o rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };

%o A000265(n) = (n>>valuation(n,2));

%o A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523

%o A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));

%o A365425(n) = A046523(A000265(A163511(n)));

%o A336467(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]+1))^f[k,2])); };

%o A365427(n) = A336467(A163511(n));

%o A365395aux(n) = [A365425(n), A365427(n)];

%o v365395 = rgs_transform(vector(1+up_to,n,A365395aux(n-1)));

%o A365395(n) = v365395[1+n];

%Y Cf. A000265, A003602, A046523, A163511, A336390, A365385, A365425, A365427, A365394.

%K nonn

%O 0,4

%A _Antti Karttunen_, Sep 04 2023