login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The sum of divisors of the smallest square divisible by n.
4

%I #10 Sep 02 2023 16:59:37

%S 1,7,13,7,31,91,57,31,13,217,133,91,183,399,403,31,307,91,381,217,741,

%T 931,553,403,31,1281,121,399,871,2821,993,127,1729,2149,1767,91,1407,

%U 2667,2379,961,1723,5187,1893,931,403,3871,2257,403,57,217,3991,1281,2863

%N The sum of divisors of the smallest square divisible by n.

%C The number of these divisors is A365345(n).

%C The sum of divisors of the square root of the smallest square divisible by n is A365347(n).

%H Amiram Eldar, <a href="/A365346/b365346.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A000203(A053143(n)).

%F Multiplicative with a(p^e) = (p^(e + 1 + (e mod 2)) - 1)/(p - 1).

%F Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-2) + 1/p^(s-1) - 1/p^(2*s-2)).

%F Sum_{k=1..n} a(k) ~ c * n^3, where c = (Pi^2/45) * zeta(3) * Product_{p prime} (1 + 1/p^2 - 1/p^3) = 0.344306233314... .

%t f[p_, e_] := (p^(e + 1 + Mod[e, 2]) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]

%o (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(f[i,2] + 1 + f[i,2]%2) - 1)/(f[i,1] - 1));}

%o (PARI) a(n) = sigma(n*core(n)); \\ _Michel Marcus_, Sep 02 2023

%Y Cf. A000203, A053143, A365345, A365347.

%K nonn,easy,mult

%O 1,2

%A _Amiram Eldar_, Sep 02 2023