Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #14 Sep 14 2023 01:11:14
%S 0,0,0,0,0,2,1,7,5,12,12,27,14,42,36,47,47,83,58,109,80,116,126,172,
%T 111,195,192,219,202,294,210,342,286,354,369,409,324,509,480,523,452,
%U 640,507,711,622,675,747,865,654,916,842,964,922,1124,940,1147,1029
%N Number of pairs of distinct positive integers <= n that cannot be linearly combined with nonnegative coefficients to obtain n.
%C Are there only two cases of nonzero adjacent equal parts, at positions n = 9, 15?
%e The pair p = (3,6) cannot be linearly combined to obtain 8 or 10, so p is counted under a(8) and a(10), but we have 9 = 1*3 + 1*6 or 9 = 3*3 + 0*6, so p not counted under a(9).
%e The a(5) = 2 through a(10) = 12 pairs:
%e (2,4) (4,5) (2,4) (3,6) (2,4) (3,6)
%e (3,4) (2,6) (3,7) (2,6) (3,8)
%e (3,5) (5,6) (2,8) (3,9)
%e (3,6) (5,7) (4,6) (4,7)
%e (4,5) (6,7) (4,7) (4,8)
%e (4,6) (4,8) (4,9)
%e (5,6) (5,6) (6,7)
%e (5,7) (6,8)
%e (5,8) (6,9)
%e (6,7) (7,8)
%e (6,8) (7,9)
%e (7,8) (8,9)
%t combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
%t Table[Length[Select[Subsets[Range[n],{2}],combs[n,#]=={}&]],{n,0,30}]
%o (Python)
%o from itertools import count
%o from sympy import divisors
%o def A365320(n):
%o a = set()
%o for i in range(1,n+1):
%o if not n%i:
%o a.update(tuple(sorted((i,j))) for j in range(1,n+1) if j!=i)
%o else:
%o for j in count(0,i):
%o if j > n:
%o break
%o k = n-j
%o for d in divisors(k):
%o if d>=i:
%o break
%o a.add((d,i))
%o return (n*(n-1)>>1)-len(a) # _Chai Wah Wu_, Sep 13 2023
%Y The unrestricted version is A000217, ranks A001358.
%Y For strict partitions we have A365312, complement A365311.
%Y The (binary) complement is A365314, positive A365315.
%Y The case of positive coefficients is A365321, for all subsets A365322.
%Y For partitions we have A365378, complement A365379.
%Y For all subsets instead of just pairs we have A365380, complement A365073.
%Y A004526 counts partitions of length 2, shift right for strict.
%Y A007865 counts sum-free subsets, complement A093971.
%Y A179822 and A326080 count sum-closed subsets.
%Y A326083 and A124506 appear to count combination-free subsets.
%Y A364350 counts combination-free strict partitions.
%Y A364914 and A365046 count combination-full subsets.
%Y Cf. A070880, A088314, A088809, A151897, A326020, A364839.
%K nonn
%O 0,6
%A _Gus Wiseman_, Sep 06 2023