login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365295
a(n) is the least positive integer that can be expressed as the sum of two distinct perfect powers (A001597) in exactly n ways.
1
1, 5, 17, 129, 468, 1025, 2628, 12025, 32045, 27625, 138125, 430625, 204425, 160225, 2010025, 2348125, 801125, 1743625, 2082925, 4978025, 4005625, 12325625, 30525625, 73046025, 5928325, 13287625, 46437625, 45177925, 35409725, 120737825, 52073125, 66438125, 29641625, 32846125, 956974625
OFFSET
0,2
LINKS
Karl-Heinz Hofmann and Hugo Pfoertner, Table of n, a(n) for n = 0..77
Karl-Heinz Hofmann, Python program
Hugo Pfoertner, PARI program and results (terms < 2*10^9), Sep 10 2023.
EXAMPLE
For n = 2: a(2) = 17 = 1^2 + 2^4 = 2^3 + 3^2.
a(6) = 2628 via 3^3 + 51^2 = 2^7 + 50^2 = 18^2 + 48^2 = 21^2 + 3^7 = 2^9 + 46^2 = 30^2 + 12^3. - David A. Corneth, Sep 09 2023
PROG
(PARI) upto(n) = {n = (sqrtint(n) + 1)^2; my(v = vector(n), pows = List([1]), r = -1, res = []); for(j = 2, logint(n, 2), for(i = 2, sqrtnint(n, j), listput(pows, i^j))); pows = Set(pows); for(i = 1, #pows - 1, j = i+1; c = pows[i] + pows[j]; while(c <= n, v[c]++; j++; c = pows[i] + pows[j])); for(i = 1, #v, c = v[i]+1; if(c > #res, res = concat(res, vector(c - #res, j, oo))); if(i < res[c], res[c] = i)); res} \\ David A. Corneth, Sep 08 2023
(PARI) \\ see link
(Python) # see link
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 31 2023
EXTENSIONS
a(8)-a(10) from David Consiglio, Jr., Sep 08 2023
a(9) corrected and a(11)-a(34) from Hugo Pfoertner, Sep 10 2023
STATUS
approved