login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365284
E.g.f. satisfies A(x) = 1 + x*A(x)*exp(x^2*A(x)^3).
2
1, 1, 2, 12, 144, 1980, 31680, 630840, 15093120, 411883920, 12607660800, 430740858240, 16265744732160, 671629503504960, 30093198326231040, 1454898560062147200, 75503612563771392000, 4186035286381024876800, 246916968958719605145600
OFFSET
0,3
FORMULA
a(n) = n! * Sum_{k=0..floor(n/2)} (n-2*k)^k * binomial(n+k+1,n-2*k)/( (n+k+1)*k! ).
a(n) ~ sqrt((1 + 2*r^2*s^3) / (12*r^2*s + 9*r^4*s^4)) * n^(n-1) / (exp(n) * r^n), where s = 1.766482823850997284176450269002863328615073785089684545740773169... is the root of the equation 3*(s-1)*LambertW(2*s*(s-1)^2) = 2 and r = 1/sqrt(3*s^3*(s-1)) = 0.280882078734447087396397749882018030987007964077248... - Vaclav Kotesovec, Mar 10 2024
MATHEMATICA
Join[{1}, Table[n! * Sum[(n - 2*k)^k*Binomial[n + k + 1, n - 2*k]/((n + k + 1)*k!), {k, 0, Floor[n/2]}], {n, 1, 20}]] (* Vaclav Kotesovec, Mar 10 2024 *)
PROG
(PARI) a(n) = n!*sum(k=0, n\2, (n-2*k)^k*binomial(n+k+1, n-2*k)/((n+k+1)*k!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 31 2023
STATUS
approved