login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365146
G.f. satisfies A(x) = ( 1 + x*A(x)^2 / (1 - x*A(x)) )^2.
3
1, 2, 11, 76, 591, 4938, 43297, 393006, 3661500, 34813530, 336447364, 3295264162, 32636826276, 326310118860, 3289090885545, 33386999310460, 341000875306393, 3501847259286514, 36136109243651145, 374513918968721080, 3896634418483676797
OFFSET
0,2
FORMULA
If g.f. satisfies A(x) = ( 1 + x*A(x)^2 / (1 - x*A(x))^s )^t, then a(n) = Sum_{k=0..n} binomial(t*(n+k+1),k) * binomial(n+(s-1)*k-1,n-k)/(n+k+1).
PROG
(PARI) a(n, s=1, t=2) = sum(k=0, n, binomial(t*(n+k+1), k)*binomial(n+(s-1)*k-1, n-k)/(n+k+1));
CROSSREFS
Sequence in context: A350580 A209101 A118802 * A350680 A349408 A053481
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 23 2023
STATUS
approved