login
G.f. satisfies A(x) = 1 + x*A(x) / (1 + x*A(x))^5.
4

%I #11 Aug 21 2023 08:23:11

%S 1,1,-4,1,46,-129,-405,3319,-1617,-59258,199541,642170,-6038395,

%T 3886091,119884973,-440626784,-1367688245,14055527190,-11043763380,

%U -290488387366,1137260033731,3336325340735,-36966844508130,34098313310315,776097820004580

%N G.f. satisfies A(x) = 1 + x*A(x) / (1 + x*A(x))^5.

%F a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(n+4*k-1,n-k) / (n-k+1).

%o (PARI) a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*binomial(n+4*k-1, n-k)/(n-k+1));

%Y Cf. A090192, A365085, A365086, A365087.

%Y Cf. A321799, A364738, A365084.

%K sign

%O 0,3

%A _Seiichi Manyama_, Aug 21 2023