|
|
A365037
|
|
E.g.f. satisfies A(x) = exp(x * (1 + x/A(x)^3)).
|
|
2
|
|
|
1, 1, 3, -11, -11, 1341, -14339, -168923, 8905065, -85313735, -4604578919, 197455645641, -273728455571, -267002430142187, 9427821270512373, 178475402982086701, -28273343910563670959, 713736314833387866225, 51907546734507018043057
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
E.g.f.: exp( x + LambertW(3*x^2*exp(-3*x))/3 ).
a(n) = n! * Sum_{k=0..n} (-3*n+3*k+1)^(k-1) * binomial(k,n-k)/k!.
|
|
PROG
|
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x+lambertw(3*x^2*exp(-3*x))/3)))
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|