%I #28 Aug 20 2023 10:50:00
%S 251,431,440,455,493,499,502,547,559,581,583,607,623
%N Primitive solutions k to the exponential Diophantine equation k^6 = Sum_{i=1..8} y_i^6 with y_i > 0.
%H L. J. Lander, T. R. Parkin and J. L. Selfridge, <a href="https://www.jstor.org/stable/2003249">A Survey of Equal Sums of Like Powers</a>, Mathematics of Computation, Vol. 21, No. 99 (Jul., 1967), pp. 446-459. Table VIII
%H <a href="/index/Di#Diophantine">Index to sequences related to Diophantine equations</a> (6,1,8)
%e 251 is a term as 251^6 = 8^6 + 12^6 + 30^6 + 78^6 + 102^6 + 138^6 + 165^6 + 246^6.
%K nonn,more
%O 1,1
%A _R. J. Mathar_, Aug 16 2023