Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Sep 17 2023 12:10:05
%S 1,2,3,6,8,9,18,24,27,54,72,81,91,162,216,243,273,486,648,729,819,
%T 1458,1944,2187,2457,4374,5832,6561,7371,13122,17496,19683,22113,
%U 39366,52488,59049,66339,118098,157464,177147,199017,354294,472392,531441,597051,1062882,1417176,1594323,1791153,3188646,4251528,4782969
%N Fixed points of A356867, where A356867 is Sycamore's Doudna variant D(3).
%C Conjecture: All terms are of the form k*3^n, where k = 1,2,8,91, and n >= 0. - _David James Sycamore_, Aug 16 2023
%F {k | k==A356867(k)}.
%o (PARI)
%o up_to = 3^14;
%o A356867list(up_to) = { my(v=vector(up_to),met=Map(),h=0,ak); for(i=1,#v,if(1==vecsum(digits(i,3)), v[i] = i; h = i, ak = v[i-h]; forprime(p=2,,if(3!=p && !mapisdefined(met,p*ak), v[i] = p*ak; break))); mapput(met,v[i],i)); (v); };
%o v356867 = A356867list(up_to);
%o A356867(n) = v356867[n];
%o isA364958(n) = (A356867(n)==n);
%Y Fixed points of A356867 and of A365390, positions of 0's in A365462.
%K nonn
%O 1,2
%A _David James Sycamore_ and _Antti Karttunen_, Sep 15 2023