login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The n-volume of the unit regular n-simplex is sqrt(a(n))/A364901(n), with a(n) being squarefree.
2

%I #19 Aug 20 2023 10:51:37

%S 1,1,3,2,5,3,7,1,1,5,11,6,13,7,15,2,17,1,19,10,21,11,23,3,1,13,3,14,

%T 29,15,31,1,33,17,35,2,37,19,39,5,41,21,43,22,5,23,47,6,1,1,51,26,53,

%U 3,55,7,57,29,59,30,61,31,7,2,65,33,67,34,69,35,71,1,73,37,3

%N The n-volume of the unit regular n-simplex is sqrt(a(n))/A364901(n), with a(n) being squarefree.

%C a(n) = 1 if and only if n = 2*k^2 - 1 or n = 4*k^2 - 4*k for k >= 1.

%C a(n) = a(n+1) = 1 if and only if n = A001333(k)^2 - 2 for even k and A001333(k)^2 - 1 for odd k.

%H Jianing Song, <a href="/A364900/b364900.txt">Table of n, a(n) for n = 0..10000</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Simplex">Simplex</a>

%F The n-volume of the unit regular n-simplex is sqrt(n+1)/(n!*2^(n/2)), so a(n) = A007913(n+1) for even n and A007913((n+1)/2) for odd n.

%e n | the n-volume of the

%e | unit regular n-simplex

%e 2 | sqrt(3)/4 = A120011

%e 3 | sqrt(2)/12 = A020829

%e 4 | sqrt(5)/96 = A364895

%e 5 | sqrt(3)/480

%e 6 | sqrt(7)/5760

%e 7 | 1/20160

%e 8 | 1/215040

%e 9 | sqrt(5)/5806080

%o (PARI) a(n) = if(n%2, core((n+1)/2), core(n+1))

%Y Cf. A007913, A364901, A120011, A020829, A364895, A001333.

%K nonn,easy

%O 0,3

%A _Jianing Song_, Aug 12 2023