login
Number of subsets S of {1..n} containing no element equal to the sum of a k-multiset of elements of S, for any 2 <= k <= |S|.
0

%I #10 Oct 18 2023 04:54:16

%S 1,2,3,6,9,15,21,34,49,75,105

%N Number of subsets S of {1..n} containing no element equal to the sum of a k-multiset of elements of S, for any 2 <= k <= |S|.

%e The a(0) = 1 through a(5) = 15 subsets:

%e {} {} {} {} {} {}

%e {1} {1} {1} {1} {1}

%e {2} {2} {2} {2}

%e {3} {3} {3}

%e {1,3} {4} {4}

%e {2,3} {1,3} {5}

%e {1,4} {1,3}

%e {2,3} {1,4}

%e {3,4} {1,5}

%e {2,3}

%e {2,5}

%e {3,4}

%e {3,5}

%e {4,5}

%e {3,4,5}

%t Table[Length[Select[Subsets[Range[n]], Intersection[#,Join@@Table[Total/@Tuples[#,k], {k,2,Length[#]}]]=={}&]],{n,0,10}]

%Y Cf. A007865, A085489, A103580, A151897, A236912, A326020, A326080, A326083, A364349, A364534.

%K nonn,more

%O 0,2

%A _Gus Wiseman_, Aug 15 2023