%I #7 Aug 06 2023 11:04:22
%S 1,1,4,25,182,1447,12175,106575,960579,8854622,83089537,791063172,
%T 7622317663,74191096721,728389554533,7204640725610,71727367291455,
%U 718195853746770,7227785937663908,73069500402699226,741712341691454837,7556704348506425398
%N G.f. satisfies A(x) = 1 + x*A(x)^5 / (1 + x*A(x)).
%F a(n) = (1/n) * Sum_{k=0..n-1} (-1)^k * binomial(n,k) * binomial(5*n-4*k,n-1-k) for n > 0.
%o (PARI) a(n) = if(n==0, 1, sum(k=0, n-1, (-1)^k*binomial(n, k)*binomial(5*n-4*k, n-1-k))/n);
%Y Cf. A090192, A106228, A364758.
%Y Cf. A364748.
%K nonn
%O 0,3
%A _Seiichi Manyama_, Aug 05 2023