%I #11 Aug 05 2023 13:12:30
%S 1,1,0,-5,-10,40,245,-26,-4375,-11410,53040,377850,-12320,-7988194,
%T -23011625,106662595,824671575,64095550,-18490968680,-57052839001,
%U 254513058375,2098532784575,419490572800,-48205987947600,-157458581103395,666628546612606,5824573247731250
%N G.f. satisfies A(x) = 1 + x*A(x) / (1 + x*A(x)^5).
%F a(n) = (1/n) * Sum_{k=0..n-1} (-1)^k * binomial(n,k) * binomial(n+4*k,n-1-k) for n > 0.
%o (PARI) a(n) = if(n==0, 1, sum(k=0, n-1, (-1)^k*binomial(n, k)*binomial(n+4*k, n-1-k))/n);
%Y Cf. A364735, A364736, A364737.
%Y Cf. A364734.
%K sign
%O 0,4
%A _Seiichi Manyama_, Aug 05 2023