%I #15 Mar 09 2024 19:18:48
%S 1,1,1,2,1,1,3,2,1,2,2,2,5,2,2,4,2,3,6,4,4,8,4,4,10,8,7,8,13,9,15,12,
%T 13,17,20,15,31,24,27,32,33,32,50,42,45,53,61,61,85,76,86,101,108,118,
%U 137,141,147,179,184,196,222,244,257,295,324,348,380,433
%N Number of (necessarily strict) integer partitions of n containing all of their own first differences.
%H John Tyler Rascoe, <a href="/A364673/b364673.txt">Table of n, a(n) for n = 0..200</a>
%e The partition y = (12,6,3,2,1) has differences (6,3,1,1), and {1,3,6} is a subset of {1,2,3,6,12}, so y is counted under a(24).
%e The a(n) partitions for n = 1, 3, 6, 12, 15, 18, 21:
%e (1) (3) (6) (12) (15) (18) (21)
%e (2,1) (4,2) (8,4) (10,5) (12,6) (14,7)
%e (3,2,1) (6,4,2) (8,4,2,1) (9,6,3) (12,6,3)
%e (5,4,2,1) (5,4,3,2,1) (6,5,4,2,1) (8,6,4,2,1)
%e (6,3,2,1) (7,5,3,2,1) (9,5,4,2,1)
%e (8,4,3,2,1) (9,6,3,2,1)
%e (10,5,3,2,1)
%e (6,5,4,3,2,1)
%t Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&SubsetQ[#,-Differences[#]]&]],{n,0,30}]
%o (Python)
%o from collections import Counter
%o def A364673_list(maxn):
%o count = Counter()
%o for i in range(maxn//3):
%o A,f,i = [[(i+1, )]],0,0
%o while f == 0:
%o A.append([])
%o for j in A[i]:
%o for k in j:
%o x = j + (j[-1] + k, )
%o y = sum(x)
%o if y <= maxn:
%o A[i+1].append(x)
%o count.update({y})
%o if len(A[i+1]) < 1: f += 1
%o i += 1
%o return [count[z]+1 for z in range(maxn+1)] # _John Tyler Rascoe_, Mar 09 2024
%Y Containing all differences: A007862.
%Y Containing no differences: A364464, strict complement A364536.
%Y Containing at least one difference: A364467, complement A363260.
%Y For subsets of {1..n} we have A364671, complement A364672.
%Y A non-strict version is A364674.
%Y For submultisets instead of subsets we have A364675.
%Y A000041 counts integer partitions, strict A000009.
%Y A008284 counts partitions by length, strict A008289.
%Y A236912 counts sum-free partitions w/o re-used parts, complement A237113.
%Y A325325 counts partitions with distinct first differences.
%Y Cf. A002865, A025065, A196723, A229816, A237667, A320347, A363225, A364272, A364345, A364463, A364537, A370386.
%K nonn
%O 0,4
%A _Gus Wiseman_, Aug 03 2023