Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Sep 06 2023 20:30:49
%S 1,2,4,6,10,14,23,34,58,96,171,302,565,1041,1969,3719,7105,13544,
%T 25999,49852,95949,184658,356129,687068,1327540,2566295,4966449,
%U 9617306,18640098,36150918,70166056,136272548,264844111,515036040,1002211421,1951345157,3801569113
%N Number of subsets of {1..n} containing all of their own first differences.
%H Rémy Sigrist, <a href="/A364671/a364671.txt">C++ program</a>
%e The subset {1,2,4,5,10,14} has differences (1,2,1,5,4) so is counted under a(14).
%e The a(0) = 1 through a(5) = 14 subsets:
%e {} {} {} {} {} {}
%e {1} {1} {1} {1} {1}
%e {2} {2} {2} {2}
%e {1,2} {3} {3} {3}
%e {1,2} {4} {4}
%e {1,2,3} {1,2} {5}
%e {2,4} {1,2}
%e {1,2,3} {2,4}
%e {1,2,4} {1,2,3}
%e {1,2,3,4} {1,2,4}
%e {1,2,3,4}
%e {1,2,3,5}
%e {1,2,4,5}
%e {1,2,3,4,5}
%t Table[Length[Select[Subsets[Range[n]], SubsetQ[#,Differences[#]]&]], {n,0,10}]
%o (C++) See Links section.
%Y For differences of all strict pairs we have A054519, for partitions A007862.
%Y For "disjoint" instead of "subset" we have A364463, partitions A363260.
%Y For "non-disjoint" we have A364466, partitions A364467 (strict A364536).
%Y The complement is counted by A364672, partitions A364673, A364674, A364675.
%Y First differences of terms are A364752, complement A364753.
%Y Cf. A151897, A196723, A237667, A237668, A325325, A326083, A363225, A364345, A364464, A364537.
%K nonn
%O 0,2
%A _Gus Wiseman_, Aug 04 2023
%E More terms from _Rémy Sigrist_, Aug 06 2023