login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364627
G.f. satisfies A(x) = 1/(1-x)^3 + x^2*A(x)^4.
2
1, 3, 7, 22, 97, 469, 2339, 12148, 65295, 358979, 2006977, 11380702, 65311575, 378574425, 2213092750, 13032826536, 77244242937, 460413902079, 2758088752351, 16596379614234, 100269075879881, 607996092039949, 3698873710967989, 22570809986322440
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(n+7*k+2,9*k+2) * binomial(4*k,k) / (3*k+1).
PROG
(PARI) a(n) = sum(k=0, n\2, binomial(n+7*k+2, 9*k+2)*binomial(4*k, k)/(3*k+1));
CROSSREFS
Cf. A364622.
Sequence in context: A108070 A038147 A252784 * A082271 A229438 A069505
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 30 2023
STATUS
approved