login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A297171(A163511(n)), where A297171 is the Möbius transform of the inverse permutation of A163511.
2

%I #14 Aug 06 2023 08:19:53

%S 0,1,1,3,2,2,2,7,4,4,2,4,5,3,6,15,8,8,4,8,4,4,4,8,10,10,4,5,13,11,14,

%T 31,16,16,8,16,8,8,8,16,8,8,4,8,8,8,8,16,20,20,10,20,7,9,6,9,26,26,12,

%U 21,29,27,30,63,32,32,16,32,16,16,16,32,16,16,8,16,16,16,16,32,16,16,8,16,8,8,8,16,16,16

%N a(n) = A297171(A163511(n)), where A297171 is the Möbius transform of the inverse permutation of A163511.

%H Antti Karttunen, <a href="/A364571/b364571.txt">Table of n, a(n) for n = 0..16383</a>

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>

%F a(n) = A297171(A163511(n)).

%o (PARI)

%o A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };

%o A054429(n) = ((3<<#binary(n\2))-n-1); \\ From A054429

%o A163511(n) = if(!n,1,A005940(1+A054429(n)));

%o A243071(n) = if(n<=2, n-1, my(f=factor(n), p, p2=1, res=0); for(i=1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p*p2*(2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); ((3<<#binary(res\2))-res-1)); \\ (Combining programs given in A156552 and A054429) - _Antti Karttunen_, Aug 05 2023

%o A297171(n) = sumdiv(n,d,moebius(n/d)*A243071(d));

%o A364571(n) = A297171(A163511(n));

%Y Cf. A163511, A243071, A297171.

%Y Cf. also A364567.

%K nonn,look

%O 0,4

%A _Antti Karttunen_, Aug 05 2023