login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of zeta(2) * primezeta(2).
1

%I #10 Jul 29 2023 04:19:12

%S 7,4,3,9,1,7,1,8,7,8,6,9,7,6,7,9,7,4,9,3,5,9,6,1,8,0,6,4,6,3,5,3,4,5,

%T 1,2,7,1,0,4,3,1,8,7,5,0,2,2,8,7,5,1,1,5,3,1,4,3,4,6,5,4,6,0,4,7,5,6,

%U 9,0,8,8,6,4,2,4,0,4,6,8,5,2,3,6,9,3,8,1,3,1,1,6,3,8,5,1,9,7,1,5,6,3,7,1,9

%N Decimal expansion of zeta(2) * primezeta(2).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimeZetaFunction.html">Prime Zeta Function</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RiemannZetaFunctionZeta2.html">Riemann Zeta Function zeta(2)</a>.

%F Equals Sum_{k>=1} omega(k) / k^2, where omega(k) is the number of distinct primes dividing k (A001221).

%e 0.743917187869767974935961806463534512710431875022875115314346546...

%t RealDigits[Zeta[2] PrimeZetaP[2], 10, 105][[1]]

%o (PARI) zeta(2) * sumeulerrat(1/p, 2) \\ _Amiram Eldar_, Jul 28 2023

%Y Cf. A001221, A013661, A085548, A098198, A364490.

%K nonn,cons

%O 0,1

%A _Ilya Gutkovskiy_, Jul 26 2023