%I #31 Aug 24 2024 15:43:22
%S 2,4,64,124,228,10978,73738,66346
%N Smallest k such that 5^(5^n) - k is prime.
%C This is to 5 as A058220 is to 2 and A140331 is to 3.
%C a(7) > 5487.
%F a(n) = A064722(A137841(n)).
%e a(2) = 64 because 5^(5^2) - 64 = 298023223876953061 is prime.
%t lst={};Do[Do[p=5^(5^n)-k;If[PrimeQ[p],AppendTo[lst,k];Break[]],{k,2,11!}],{n,7}];lst
%t Table[k=1;Monitor[Parallelize[While[True,If[PrimeQ[5^(5^n)-k],Break[]];k++];k],k],{n,1,7}]
%t y[n_] := Module[{x = 5^(5^n)}, x - NextPrime[x, -1]]; Array[y, 7]
%o (PARI) a(n) = my(x = 5^(5^n)); x - precprime(x);
%Y Cf. A064722, A137841.
%Y Cf. A058220, A140331, A364452, A364454.
%K more,nonn
%O 0,1
%A _J.W.L. (Jan) Eerland_, Jul 25 2023
%E a(0) prepended and a(7) from _Michael S. Branicky_, Aug 24 2024