login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies A(x) = 1 + x*A(x)*(2 + A(x)^3).
3

%I #9 Jul 25 2023 07:35:13

%S 1,3,18,162,1728,20169,249318,3207600,42500700,576012060,7947785448,

%T 111269613006,1576658688480,22568473199358,325855352769588,

%U 4740157737123696,69405108247439676,1022070746845708740,15127922880893671704,224931239520535651464

%N G.f. satisfies A(x) = 1 + x*A(x)*(2 + A(x)^3).

%F a(n) = Sum_{k=0..n} 2^(n-k) * binomial(n,k) * binomial(n+3*k+1,n) / (n+3*k+1).

%F D-finite with recurrence 3*n*(3*n-1)*(3*n+1)*a(n) +2*(-74*n^3 -375*n^2+ 665*n -252)*a(n-1) +12*(-337*n^3 +1941*n^2 -2984*n +1092)*a(n-2) +144*(-70*n^3 +861*n^2 -3347*n +4152)*a(n-3) +432*(n-4)*(31*n^2 -314*n +735)*a(n-4) -2592*(10*n-51) *(n-4)*(n-5)*a(n-5) +15552*(n-5)*(n-6) *(n-4)*a(n-6)=0. - _R. J. Mathar_, Jul 25 2023

%p A364432 := proc(n)

%p add(2^(n-k)* binomial(n,k) * binomial(n+3*k+1,n) / (n+3*k+1),k=0..n) ;

%p end proc:

%p seq(A364432(n),n=0..70); # _R. J. Mathar_, Jul 25 2023

%o (PARI) a(n) = sum(k=0, n, 2^(n-k)*binomial(n, k)*binomial(n+3*k+1, n)/(n+3*k+1));

%Y Cf. A047891, A348793.

%Y Cf. A364430, A364431.

%K nonn

%O 0,2

%A _Seiichi Manyama_, Jul 24 2023