Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Aug 28 2024 02:34:28
%S 1,0,-1,2,-2,-1,9,-20,20,24,-150,327,-293,-599,3097,-6452,4854,15878,
%T -71252,140112,-81328,-437346,1746254,-3214989,1223971,12345295,
%U -44552833,76242173,-11292089,-354175849,1167638037,-1842585992,-233903034,10273377388,-31169512310
%N G.f. satisfies A(x) = (1 + x) * (1 - x*A(x)^2).
%F G.f.: A(x) = 2*(1 + x) / (1 + sqrt(1+4*x*(1 + x)^2)).
%F a(n) = Sum_{k=0..n} (-1)^k * binomial(2*k+1,k) * binomial(2*k+1,n-k) / (2*k+1).
%F D-finite with recurrence (n+1)*a(n) +(5*n-1)*a(n-1) +6*(2*n-3)*a(n-2) +6*(2*n-5)*a(n-3) +2*(2*n-7)*a(n-4)=0. - _R. J. Mathar_, Jul 25 2023
%F From _Peter Bala_, Aug 24 2024: (Start)
%F A(x) = (1 + x)*c(-x*(1+x)^2), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108.
%F (1/x) * series_reversion(x/A(x)) = 1 - x^2 + 2*x^3 - 11*x^5 + 28*x^6 + ..., the g.f. of A364375. (End)
%p A364371 := proc(n)
%p add((-1)^k* binomial(2*k+1,k) * binomial(2*k+1,n-k)/(2*k+1),k=0..n) ;
%p end proc:
%p seq(A364371(n),n=0..70); # _R. J. Mathar_, Jul 25 2023
%o (PARI) a(n) = sum(k=0, n, (-1)^k*binomial(2*k+1, k)*binomial(2*k+1, n-k)/(2*k+1));
%Y Cf. A364372, A364373, A364375.
%Y Cf. A000108, A073157.
%K sign,easy
%O 0,4
%A _Seiichi Manyama_, Jul 20 2023