login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of endofunctions on [n] such that the number of elements that are mapped to i is a multiple or a divisor of i.
4

%I #15 Oct 27 2023 12:20:41

%S 1,1,4,20,177,1462,21919,254802,4816788,82401465,1929926410,

%T 35256890748,1152938630784,24977973856643,823036511854847,

%U 24332827884557037,954801492779273665,27023410818058291822,1309814517293654535339,41375530521928893861920

%N Number of endofunctions on [n] such that the number of elements that are mapped to i is a multiple or a divisor of i.

%H Alois P. Heinz, <a href="/A364344/b364344.txt">Table of n, a(n) for n = 0..400</a>

%e a(0) = 1: ().

%e a(1) = 1: (1).

%e a(2) = 2: (11), (12), (21), (22).

%e a(3) = 20 (111), (112), (113), (121), (122), (123), (131), (132), (211), (212), (213), (221), (223), (231), (232), (311), (312), (321), (322), (333).

%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p add(b(n-i*j, i-1)*binomial(n, i*j), j=0..n/i)+add(

%p `if`(d>n or d=i, 0, b(n-d, i-1)*binomial(n, d)),

%p d=numtheory[divisors](i))))

%p end:

%p a:= n-> b(n$2):

%p seq(a(n), n=0..19);

%t b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n - i*j, i - 1]* Binomial[n, i*j], {j, 0, n/i}]+Sum[If[d>n || d == i, 0, b[n - d, i - 1]* Binomial[n, d]], {d, Divisors[i]}]]];

%t a[n_] := b[n, n];

%t Table[a[n], {n, 0, 19}] (* _Jean-François Alcover_, Oct 27 2023, after _Alois P. Heinz_ *)

%Y Cf. A000312, A178682, A334370, A364327, A364328.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Jul 19 2023